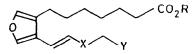
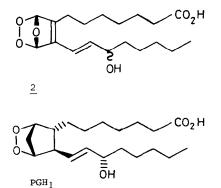
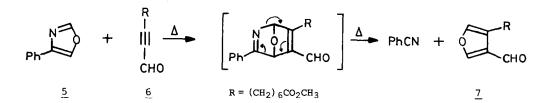
THE SYNTHESIS OF 3,4-DISUBSTITUTED FURAN PROSTANOIDS

M.F. Ansell^{*a}, M.P.L. Caton^b and P.C. North^a


^aDepartment of Chemistry, Queen Mary College (University of London), Mile End Road, London El 4NS, England.

^bThe Research Laboratories, May & Baker Ltd., Dagenham, Essex RM10 7XS, England.


Abstract: The reaction of 4-phenyloxazole with methyl 10-oxodec-8-ynoate is reported as the key step in the synthesis of 3,4-disubstituted furan prostanoids.


The enzyme mediated reaction of oxygen with poly-unsaturated fatty acids to give prostaglandin endoperoxides (e.g. PGH_1) has long been established as the key step in prostaglandin biosynthesis.¹ In connection with work on PGH_1 analogues,² our attention was turned to the novel 3,4-disubstituted furan prostanoid <u>1</u>. Furans are known to undergo a facile 2+4 cycloaddition with oxygen to give bicyclic endoperoxides³ and we reasoned that the reaction of <u>1</u> with oxygen *in vivo* may give the short-lived (cf. PGH_1) intermediate <u>2</u> of close structural similarity to PGH_1 .

Thus, $\underline{1}$ could exhibit interesting biological activity by competing for oxygen thereby inhibiting PGH formation. Alternatively the adduct $\underline{2}$ may exhibit PGH₁ agonist activity or selectively inhibit any one of the PGH₁ metabolites.¹ The additional possibility of $\underline{1}$, like some other heterocyclic prostanoids,⁴ having intrinsic biological activity prompted us to synthesize it together with other related analogues.

- <u>1</u> $X = CHOH; Y = (CH_2)_3CH_3; R = H$
- <u>3</u> X = CO; $Y = (CH_2)_3CH_3;$ $R = CH_3$
- $4 \quad X = CHOH; \quad Y = OPh; \quad R = CH_3$

The synthesis of <u>1</u> was achieved via the aldehyde <u>7</u> prepared by an interesting one-pot Diels-Alder, retro Diels-Alder reaction of methyl 10-oxodec-8-ynoate² <u>6</u> with 10 equivalents of 4-phenyloxazole⁵ <u>5</u> (200°, 3.5h) which gave <u>7</u> in 73% yield⁶ [b.p. 175-180°/0.1mm (short-path); m.p. 40-41°; NMR/CDCl₃ δ 9.97 (1H, s, CHO), δ 8.02 (1H, s, -OCH=), δ 7.25 (1H, s, -OCH=), δ 3.65 (3H, s, CO₂CH₃); ν_{max}/cm^{-1} 1730 (CO₂CH₃), 1690 (CHO); $\lambda_{max}/EtOH$ 207, 217, 259 nm; m/e 238.1203 (M[†])]. This method should find wide applicability to the direct conversion of readily available acetylenic aldehydes² into relatively inaccessible 3,4-disubstituted formyl furans.⁷

Standard elaboration of $\underline{7}$ using dimethyl 2-oxoheptylphosphonate gave the enone $\underline{3}$ (92%) which, after ketone reduction² followed by ester hydrolysis (excess LiOH, THF-H₂O, 24h, O^O), afforded $\underline{1}$ as a mixture of isomeric alcohols in 77% yield from $\underline{3}$. Similarly, elaboration of $\underline{7}$ using dimethyl 2-oxo-3-phenoxypropylphosphonate⁸ gave, after ketone reduction, the phenoxy analogue $\underline{4}$. The ability of these prostanoids to act as a diene in 2+4 cycloaddition reactions was demonstrated by the methyl ester of $\underline{1}$ which on treatment with N-methylmaleimide at room temperature gave the expected adduct in 70% yield.

Biological evaluation of analogues $\underline{1}$ and $\underline{4}$ is currently in progress and will be reported at a later date.⁹

REFERENCES AND NOTES

- 1. K.C. Nicolaou, G.P. Gasic and W.E. Barnette, Angew. Chem. Int. ed., 17, 293 (1978).
- 2. M.F. Ansell, M.P.L. Caton and P.C. North, Tetrahedron Letters, preceding paper.
- 3. J. Hamer (Ed.) '1,4-Cycloaddition reactions', Academic Press, New York, 1967, p.288.
- 4. For leading refs. see M.P.L. Caton and K. Crowshaw, Progr. Med. Chem., 15, 384 (1978).
- Prepared in one step from phenacyl bromide; H. Bredereck and R. Gompper, Chem. Ber., 87, 700 (1954). The oxazole was purified via its hydrochloride salt. The excess oxazole was recovered by distillation after reaction with 6.
- 6. All intermediates were characterised by 100 MHz PMR, IR, UV and mass spectra.
- For related examples of this approach see R. Lakhan and B. Ternai, Adv. Heterocyclic Chem., 17, 190 (1974); J. Hutton, B. Potts and P.F. Southern, Synth. Commun., 9, 789 (1979).
- 8. J. Bowler and N.S. Crossley, Brit. Pat., 1350971.
- 9. The financial support of a Science Research Council CASE award to P.C. North is gratefully acknowledged.

(Received in UK 19 January 1981)